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Motivation 

§  Resilience: a big challenge for Exascale systems  
•  Millions of processors/cores 
•  Low-power processors/cores: power requirements 
—  Increased sensitivity to internal/external events 
—  Transient faults: going wrong without being noticed 

•  Streamlined and simple processors 
—  Cannot afford pure hardware-based resilience 

§  An attractive solution 
•  Software-implemented hardware fault tolerance (SIHFT) 
•  In house source-to-source compiler infrastructure: 

ROSE@LLNL 
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Approach: compiler-based 
transformations to add resilience 
§  Source code annotation (pragmas) 

•  What to protect 
•  What to do when things go wrong 
•  Can be auto inserted later on 

§  Source-to-source translator 
•  Fault detection: N-Modular 

Redundancy (NMR) 
•  Connect to fault-handling policies 

§  Backend compiler: vendor 
compilers or GCC 
•  binary executable 

§  Intel PIN: fault injection 

ROSE::FTTransform 

Backend 
Compiler 

Annotated 
source code 

Transformed 
source code 

Binary 
executable 

Fault Injection 
(Intel PIN) 
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Hierarchical structure of fault-
handling policies 

§  Controller policies: e.g. Final-wish, Second-chance.  Must be used with next-level 
policies 

§  Terminal policies: final decision about how to unify results. e.g adjudicators 
implementing voting strategies, mean, median, majority voting, etc. 
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Source code pragmas and semantics 
Final-wish Second-chance 

 

Pragmas 
syntax 

#pragma resilience FT-FW 
(NEXT_POLICY) 
y =f (x); 

#pragma resilience FT-SC(NEXT_POLICY, 
NUM_ITER) 
y =f (x); 

Semantics // N-Modular Redundancy 
y[0] = f(x); 
   ...  
y[N-1] = f(x) ;  
 
// Tentatively pick one as the final result 
y = PICK_RANDOM( y[ 0 ] , . . . , y[N-1]); 
// Fault detection 
if ( !EQUALS( y[ 0 ] , . . . , y[N-1] ,y) )  
{  
// Fault handling 
   NEXT_POLICY; 
} 
 

for ( int rI = 0 ; ; rI ++)  
{ 
  // N-Modular Redundancy 
  y[0] = f(x) ; 
   ...  
  y[N-1] = f(x) ;  
 
// Tentatively pick one as the final result 
y = PICK_RANDOM( y[ 0 ] , . . . , y[N-1]); 
 
  // No Fault is detected?  
 if (EQUALS( y[ 0 ] , . . . , y[N-1] ,y) ) 
      break; 
  // Reaching the limit of having a second chance ? 
  else if ( rI == NUM_ITER ) 
     // Fault handling 
    NEXT_POLICY; 
} 
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Concerns for implementing source 
level N-Modular Redundancy 
§  ROSE::FTTransform’s central idea: 

•  Detects/handles transient processor faults via 
redundant execution of critical source code statements 
—  Naive implementation: duplication of N copies of computation 

•  Feasible?  
—  back-end compilers have Common Subexpression Elimination 

(CSE) 

•  Overhead?  
—  Nx times slower in worst case 
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Transformations: optimizer-proof 
code redundancy 

Using an extra pointer to 
help preserve source code 
redundancy  

Statement to be protected 
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Transformations: reducing overhead 
for NMR 

Relying on baseline double 
modular redundancy (DMR) 
to help reduce overhead 

Statement to be protected 
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Implementation of 
ROSE::FTTransform 

C/C++/Fortran 
OpenMP/UPC 
Source Code 

Analyzed/ 
Transformed 

Source 

EDG Front-end/ 
Open Fortran Parser 

IR 
(AST) 

Unparser 

ROSE compiler infrastructure  

2009 
Winner 

www.roseCompiler.org 

Control Flow 

ROSE-based source-to-source tools 

System Dependence 

Data Dependence 

Backend 
Compiler 

Executable 
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Results: necessity and effectiveness 
of optimizer-proof code redundancy 

Transformation Method PAPI_FP_INS 
DMR/Orig. 

(O1) 

PAPI_FP_INS 
DMR/Orig. 

(O2) 

PAPI_FP_INS 
DMR/Orig. 

(O3) 
Our method of using 
pointers 

Doubled Doubled Doubled 

Naïve Duplication The same The same 
 

The same 
 

Naïve Duplication buried 
within a basic block 

The same The same The same 
 

§  Check if redundant computation can survive compiler optimizations 
•  Jacobi 1-D 3-point kernel 1) original  version, and 2) protected version using 

double module redundancy. 
•  PAPI (PAPI_FP_INS): the number of floating point instructions for both 

versions 
•  GCC 4.3.4, O1 to O3 
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Results: performance overhead 
§  Performance overhead: DMR 

•  Also good approximation for general NMR, excluding 
overhead from the incidental N-2 redundancy and fault-
handling mechanism 

•  Experimental environment 
—  4-core AMD Opteron:  L1 data: 64K, L2: 512K, L3 6M, 129GB  

Memory 
—  64-bit SUSE Enterprise 11.1, GCC 4.3.4 (-03) 

•  Benchmarks:  
—  three versions of Jacobi : 1D 1-point, 1D 3-point, and 2D 5-point 
—  Livermore loops* 

•  Explore impact of latencies of the original codes (Jacobi):  
—  Data set size: arrays fitting into cache or not 
—  Iteration strides: 1 vs. 8 
—  Element sizes: single vs. double precision 

* http://en.wikipedia.org/wiki/Livermore_loops 



Lawrence Livermore National Laboratory 13 

Results (cont.) ─ overhead 
§  Jacobi kernel:  

•  Overhead: 0% to 30% 
•  Minimum overhead 
—  Stride=8 
—  Array size 16Kx16K 
—  Double precision 

•  The more original  
    latency, the  
   less overhead of  
   added redundancy 

•  Livermore kernel 
—  Kernel 1 (Hydro fragment) – 20% 
—  Kernel 4 (Banded linear equations) – 40% 
—  Kernel 5 (Tri-diagonal elimination) – 26% 
—  Kernel 11 (First sum) – 2% 
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Results: fault coverage and 
effectiveness 
§  Benchmarks: Livermore Loops suite 

•  kernels #1, #4, #5, and #11  
•  Three versions for each kernel:  
—  Original unprotected code 
—  Mean: TMR (using baseline DMR) and mean voting is added. 
—  Exact: TMR (using baseline DMR) and exact majority voting is added. 

§  Fault injection: Intel Pin tool  
•  Training runs: record correct instruction counts and output 
•  Fault injection runs (500 times): flip a random bit of input general 

purpose/floating point register of a random instruction 

§  Exit condition categories the execution 
•  Correct result, Access fault (invalid memory access), Fail silent, 

Invalid instruction, Invalid arithmetic operation 
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Results (cont.) - Fault coverage 
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Results (cont.) - Fault coverage 

Significant improvements: Loop#1 
•  Majority voting > Mean voting 
•  Shrinking fail silient (soft errors) 

compared to unprotected version 
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Results (cont.) - Fault coverage 

Still visible improvements for  
Loop #5 and #11  
* Observed many access faults 
due to many array index corruptions 
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Summary 
§  Fault handling via source-level code transformation 

•  + Low cost and flexible 
•  + Keeps programmer in-the-loop 
•  -  Can’t specify low-level details 

§  Feasibility: work with compiler optimizations.  
•  CSE issues can be overcome with careful program 

transformation 

§  Overhead: N redundant executions != Nx slower  
•  N-2 redundancy on demand 
•  Hide overhead within latencies of original code (could be 

plenty for Exascale! ) 

§  Effectiveness: 
•  In both fault detection and handling 
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Future work 

§  Using multithreading for duplicated work:  
•  thread vs. instruction/statement level redundancy 

§  Include more fault handling policies 

§  More ways to live with compiler optimizations 
(CSE) 
•  transformation at binary level 

§  Automatically identify critical code portions for  
added resilience 
•  Probabilistic model of operations,  sensitivity to input 

characteristics 
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Thank You! 

§  Questions? 


